October 15, 2020, via Zoom webinar Robots can act as a force multiplier for people, whether a robot assisting an astronaut with a repair on the International Space station, a UAV taking flight over our cities, or an autonomous vehicle driving through our streets. Existing approaches use action-based representations that do not capture the goal-based meaning of a language expression and do not generalize to partially observed environments. The aim of Professor Stefanie Tellex's research program is to create autonomous robots that can understand complex goal-based commands and execute those commands in partially observed, dynamic environments. I will describe demonstrations of object-search in a POMDP setting with information about object locations provided by language, and mapping between English and Linear Temporal Logic, enabling a robot to understand complex natural language commands in city-scale environments. These advances represent steps towards robots that interpret complex natural language commands in partially observed environments using a decision theoretic framework. Speaker Bio: Stefanie Tellex is an Associate Professor of Computer Science at Brown University. Her group, the Humans to Robots Lab, creates robots that seamlessly collaborate with people to meet their needs using language, gesture, and probabilistic inference, aiming to empower every person with a collaborative robot. She completed her Ph.D. at the MIT Media Lab in 2010, where she developed models for the meanings of spatial prepositions and motion verbs. Her postdoctoral work at MIT CSAIL focused on creating robots that understand natural language. Her work has been featured in the press on National Public Radio, BBC, MIT Technology Review, Wired and Wired UK, as well as the New Yorker. She was named one of Wired UK’s Women Who Changed Science In 2015 and listed as one of MIT Technology Review’s Ten Breakthrough Technologies in 2016.