Learning from Bacteria about Social Networks

submitted by George Yang on 09/28/15 1

Google Tech Talk (more info below) September 30, 2011 Presented by Eshel Ben-Jacob. ABSTRACT Scientific American placed Professor Eshel Ben-Jacob and Dr. Itay Baruchi's creation of a type of organic memory chip on its list of the year's 50 most significant scientific discoveries in 2007. For the last decade, he has pioneered the field of Systems Neuroscience, focusing first on investigations of living neural networks outside the brain. en.wikipedia.org/wiki/Eshel_Ben-Jacob Learning from Bacteria about Information Processing Bacteria, the first and most fundamental of all organisms, lead rich social life in complex hierarchical communities. Collectively, they gather information from the environment, learn from past experience, and make decisions. Bacteria do not store genetically all the information required to respond efficiently to all possible environmental conditions. Instead, to solve new encountered problems (challenges) posed by the environment, they first assess the problem via collective sensing, then recall stored information of past experience and finally execute distributed information processing of the 109-12 bacteria in the colony, thus turning the colony into super-brain. Super-brain, because the billions of bacteria in the colony use sophisticated communication strategies to link the intracellular computation networks of each bacterium (including signaling path ways of billions of molecules) into a network of networks. I will show illuminating movies of swarming intelligence of live bacteria in which they solve optimization problems for collective decision making that are beyond what we, human beings, can solve with our most powerful computers. I will discuss the special nature of bacteria computational principles in comparison to our Turing Algorithm computational principles, showing that we can learn from the bacteria about our brain, in particular about the crucial role of the neglected other side of the brain, distributed information processing of the astrocytes. Eshel Ben-Jacob is Professor of Physics of Complex Systems and holds the Maguy-Glass Chair in Physics at Tel Aviv University. He was an early leader in the study of bacterial colonies as the key to understanding larger biological systems. He maintains that the essence of cognition is rooted in the ability of bacteria to gather, measure, and process information, and to adapt in response. For the last decade, he has pioneered the field of Systems Neuroscience, focusing first on investigations of living neural networks outside the brain and later on analysis of actual brain activity. In 2007, Scientific American selected Ben-Jacob's invention, the first hybrid NeuroMemory Chip, as one of the 50 most important achievements in all fields of science and technology for that year. The NeuroMemory Chip entails imprinting multiple memories, based upon development of a novel, system-level analysis of neural network activity (inspired by concepts from statistical physics and quantum mechanics), ideas about distributed information processing (inspired by his research on collective behaviors of bacteria) and new experimental methods based on nanotechnology (carbon nanotubes). Prof. Ben-Jacob received his PhD in physics (1982) at Tel Aviv University, Israel. He served as Vice President of the Israel Physical Society (1999-2002), then as President of the Israel Physical Society (2002-2005), initiating the online magazine PhysicaPlus, the only Hebrew-English bilingual science magazine. The general principles he has uncovered have been examined in a wide range of disciplines, including their application to amoeboid navigation, bacterial colony competition, cell motility, epilepsy, gene networks, genome sequence of pattern-forming bacteria, network theory analysis of the immune system, neural networks, search, and stock market volatility and collapse. He has examined implications of bacterial collective intelligence for neurocomputing. His scientific findings have prompted studies of their implications for computing: using chemical "tweets" to communicate, millions of bacteria self-organize to form colonies that collaborate to feed and defend themselves, as in a sophisticated social network. This talk was hosted by Boris Debic, and arranged by Zann Gill and the Microbes Mind Forum.

Leave a comment

Be the first to comment

Email
Message
×
Embed video on a website or blog
Width
px
Height
px
×
Join Huzzaz
Start collecting all your favorite videos
×
Log in
Join Huzzaz

facebook login
×
Retrieve username and password
Name
Enter your email address to retrieve your username and password
(Check your spam folder if you don't find it in your inbox)

×