19. Quantum Mechanics I: The key experiments and wave-particle duality

submitted by pkamweru on 08/11/15 1

For more information about Professor Shankar's book based on the lectures from this course, Fundamentals of Physics: Mechanics, Relativity, and Thermodynamics, visit bit.ly/1jFIqNu. Fundamentals of Physics, II (PHYS 201) The double slit experiment, which implies the end of Newtonian Mechanics is described. The de Broglie relation between wavelength and momentum is deduced from experiment for photons and electrons. The photoelectric effect and Compton scattering, which provided experimental support for Einstein's photon theory of light are reviewed. The wave function is introduced along with the probability interpretation. The uncertainty principle is shown arise from the fact that the particle's location is determined by a wave and that waves diffract when passing a narrow opening. 00:00 - Chapter 1. Recap of Young's double slit experiment 09:10 - Chapter 2. The Particulate Nature of Light 23:15 - Chapter 3. The Photoelectric Effect 31:19 - Chapter 4. Compton's scattering 36:10 - Chapter 5. Particle-wave duality of matter 48:33 - Chapter 6. The Uncertainty Principle Complete course materials are available at the Open Yale Courses website: open.yale.edu/courses This course was recorded in Spring 2010. For more information about Professor Shankar's book based on the lectures from this course, Fundamentals of Physics: Mechanics, Relativity, and Thermodynamics, visit bit.ly/1jFIqNu.

Leave a comment

Be the first to comment

Email
Message
×
Embed video on a website or blog
Width
px
Height
px
×
Join Huzzaz
Start collecting all your favorite videos
×
Log in
Join Huzzaz

facebook login
×
Retrieve username and password
Name
Enter your email address to retrieve your username and password
(Check your spam folder if you don't find it in your inbox)

×